Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e24694, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318050

RESUMO

Management of neuroblastoma is challenging because of poor response to drugs, chemotherapy resistance, high relapse, and treatment failures. Doxorubicin is a potent anticancer drug commonly used for neuroblastoma treatment. However, doxorubicin induces considerable toxicities, particularly those caused by oxidative-related damage. To minimize drug-induced adverse effects, the combined use of anticancer drugs with natural-derived compounds possessing antioxidant properties has become an interesting treatment strategy. Barakol is a major compound found in Cassia siamea, an edible plant with antioxidant and anticancer properties. Therefore, barakol could potentially be used in combination with doxorubicin to synergize the anticancer effect, while minimizing the oxidative-related toxicities. Herein, the potential of barakol (0.0043-43.0 µM) to synergize the anticancer effect of low-dose doxorubicin (0.5 and 1.0 µM) was investigated. Results indicated that barakol could enhance the cytotoxic effect of low-dose doxorubicin by affecting the cell viability of the treated cells. Furthermore, the co-treatment with barakol and low-dose doxorubicin decreased the levels of intracellular ROS when compared with the control. Moreover, the antimetastatic effect of the barakol itself was studied through its ability to inhibit metalloproteinase-3 (MMP-3) activity and prevent cell migration. Results revealed that the barakol inhibited MMP-3 activity and prevented cell migration in time- and dose-dependent manners. Additionally, barakol was a non-cytotoxic agent against the normal tested cell line (MRC-5), which suggested its selectivity and safety. Taken together, barakol could be a promising compound to be further developed for combination treatment with low-dose doxorubicin to improve therapeutic effectiveness but decrease drug-induced toxicities. The inhibitory effects of barakol on MMP-3 activity and cancer cell migration also supported its potential to be developed as an antimetastatic agent.

2.
Sci Rep ; 14(1): 1788, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245578

RESUMO

Profenofos (PF) and captan (CT) are among the most utilized organophosphorus insecticides and phthalimide fungicides, respectively. To elucidate the physicochemical and influential toxicokinetic factors, the mechanistic interactions of serum albumin and either PF or CT were carried out in the current study using a series of spectroscopy and computational analyses. Both PF and CT could bind to bovine serum albumin (BSA), a representative serum protein, with moderate binding constants in a range of 103-104 M-1. The bindings of PF and CT did not induce noticeable BSA's structural changes. Both pesticides bound preferentially to the site I pocket of BSA, where the hydrophobic interaction was the main binding mode of PF, and the electrostatic interaction drove the binding of CT. As a result, PF and CT may not only induce direct toxicity by themselves, but also compete with therapeutic drugs and essential substances to sit in the Sudlow site I of serum albumin, which may interfere with the pharmacokinetics and equilibrium of drugs and other substances causing consequent adverse effects.


Assuntos
Captana , Organotiofosfatos , Praguicidas , Ligação Proteica , Espectrometria de Fluorescência , Simulação de Acoplamento Molecular , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Sítios de Ligação , Termodinâmica , Dicroísmo Circular
3.
ACS Omega ; 8(49): 46977-46988, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107906

RESUMO

The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.

4.
ACS Omega ; 8(36): 32593-32605, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720749

RESUMO

This work presents a flexible synthesis of 10 novel naphthoquinone-chalcone derivatives (1-10) by nucleophilic substitution of readily accessible aminochalcones and 2,3-dichloro-1,4-naphthoquinone. All compounds displayed broad-spectrum cytotoxic activities against all the tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, T47D, and MDA-MB-231) with IC50 values in the range of 0.81-62.06 µM, especially the four most potent compounds 1, 3, 8, and 9. The in vitro investigation on the fibroblast growth factor receptor 1 (FGFR1) inhibitory effect indicated that eight derivatives (1-2, 4-5, and 7-10) were active FGFR1 inhibitors (IC50 = 0.33-3.13 nM) with more potency than that of the known FGFR1 inhibitor, AZD4547 (IC50 = 12.17 nM). Promisingly, compounds 5 (IC50 = 0.33 ± 0.01 nM), 9 (IC50 = 0.50 ± 0.04 nM), and 7 (IC50 = 0.85 ± 0.08 nM) were the three most potent FGFR1 inhibitors. Molecular docking, molecular dynamics simulations, and MM/GBSA-based free energy calculation revealed that the key amino acid residues involved in the binding of the compounds 5, 7, and 9 and the target FGFR1 protein were similar with those of the AZD4547 (i.e., Val492, Lys514, Ile545, Val561, Ala640, and Asp641). These findings revealed that the newly synthesized naphthoquinone-chalcone scaffold is a promising structural feature for an efficient inhibition of FGFR1.

5.
ACS Omega ; 8(37): 33367-33379, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744807

RESUMO

Encouraged by the lack of effective treatments and the dramatic growth in the global prevalence of neurodegenerative diseases along with various pharmacological properties of chalcone pharmacophores, this study focused on the development of aminochalcone-based compounds, organic molecules characterized by a chalcone backbone (consisting of two aromatic rings connected by a three-carbon α,ß-unsaturated carbonyl system) with an amino group attached to one of the aromatic rings, as potential neuroprotective agents. Thus, the aminochalcone-based compounds in this study were designed by bearing a -OCH3 moiety at different positions on the ring and synthesized by the Claisen-Schmidt condensation. The compounds exhibited strong neuroprotective effects against hydrogen peroxide-induced neuronal death in the human neuroblastoma (SH-SY5Y) cell line (i.e., by improving cell survival, reducing reactive oxygen species production, maintaining mitochondrial function, and preventing cell membrane damage). The aminochalcone-based compounds showed mild toxicity toward a normal embryonic lung cell line (MRC-5) and a human neuroblastoma cell line, and were predicted to have preferable pharmacokinetic profiles with potential for oral administration. Molecular docking simulation indicated that the studied aminochalcones may act as competitive activators of the well-known protective protein, SIRT1, and provided beneficial knowledge regarding the essential key chemical moieties and interacting amino acid residues. Collectively, this work provides a series of four promising candidate agents that could be developed for neuroprotection.

6.
EXCLI J ; 21: 360-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320811

RESUMO

A series of sixteen acetamidosulfonamide derivatives (1-16) have been synthesized and investigated for their antioxidant (radical scavenging and superoxide dismutase (SOD)) and antimicrobial activities. Most compounds exhibited antioxidant activities in which compound 15 displayed the most potent radical scavenging and SOD activities. Quantitative structure-activity relationship (QSAR) has been studied using multiple linear regression. The constructed QSAR models displayed high correlation coefficient (Q 2 LOO-CV = 0.9708 and 0.8753 for RSA and SOD activities, respectively), but low root mean square error (RMSE LOO-CV = 0.5105 and 1.3571 for RSA and SOD activities, respectively). The structure-activity relationship showed that an ethylene group connected to pyridine ring provided significant antioxidant activities. The QSAR models give insight into the rational designed of eighty new sulfonamides with various electron donating and withdrawing groups. The top five new designed sulfonamides with nitro group are potential antioxidants to be further developed for medicinal applications.

7.
Front Mol Neurosci ; 15: 890838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935335

RESUMO

Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 µM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.

8.
Heliyon ; 8(8): e10067, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991984

RESUMO

Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding their versatile properties to interact with various biological targets. Quantitative structure-activity relationship (QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38 sulfur-containing derivatives (Types I-VI) were evaluated for their in vitro anticancer activities against 6 cancer cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell line (IC50 = 14.47 µM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e., HepG2, A549, and MDA-MB-231: IC50 range = 1.50-16.67 µM). Compound 10 showed the best activity for MOLT-3 (IC50 = 1.20 µM) whereas compound 22 was noted for T47D (IC50 = 7.10 µM). Subsequently, six QSAR models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided reliable predictive performance (training sets: Rtr range = 0.8301-0.9636 and RMSEtr = 0.0666-0.2680; leave-one-out cross validation sets: RCV range = 0.7628-0.9290 and RMSECV = 0.0926-0.3188). From QSAR modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-water partition coefficient, as well as frequency/presence of C-N, F-F, and N-N bonds in the molecule are essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anticancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advantageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with improved bioactivities and properties.

9.
ACS Omega ; 7(21): 17881-17893, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664590

RESUMO

Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 µM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.

10.
Rejuvenation Res ; 25(1): 2-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35044248

RESUMO

Spilanthes acmella Murr., a well-known Thai traditional medicine, has been used for treatment of toothache, rheumatism, and fever. Diverse pharmacological activities of S. acmella Murr. have been reported. In this study, antioxidative and neuroprotective effects of S. acmella Murr. extracts as well as bioactive scopoletin, vanillic acid, and trans-ferulic acid found in the aerial parts of this plant species have been described. Protective effect of S. acmella Murr. extracts and bioactive compounds on dexamethasone-induced neuronal cell death was investigated. Different plant crude ethyl acetate (EtOAc) and methanol (MeOH) extracts including pure compounds of S. acmella Murr. were evaluated in human neuroblastoma SH-SY5Y cells. Cytotoxic effects were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanisms involved in the antioxidant effects of S. acmella Murr. regarding the activation of antioxidant marker proteins such as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) were determined using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, Western blot analysis, and immunocytochemistry. Dexamethasone significantly caused the decrease of SH-SY5Y cell viability. Conversely, the increases in reactive oxygen species (ROS), autophagy, and apoptosis were observed in dexamethasone-treated cells. S. acmella Murr. MeOH and EtOAc extracts, as well as the bioactive compounds, reversed the toxic effect of dexamethasone by increasing the cell viability, SIRT3 protein expression but reducing the ROS, autophagy, and apoptosis. This study demonstrated that S. acmella Murr. may exert its protective effects against ROS through SOD2 and SIRT3 signaling pathways in dexamethasone-induced neurotoxicity. S. acmella Murr. may be a candidate therapy for neuroprotection.


Assuntos
Asteraceae , Fármacos Neuroprotetores , Antioxidantes/farmacologia , Asteraceae/química , Morte Celular , Sobrevivência Celular , Humanos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio
11.
ACS Omega ; 6(47): 31854-31868, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870008

RESUMO

A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.

12.
Sci Rep ; 11(1): 20187, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642420

RESUMO

5-Amino-8-hydroxyquinoline (5A8HQ), an amino derivative of 8-hydroxyquinoline, has become a potential anticancer candidate because of its promising proteasome inhibitory activity to overcome and yet synergize bortezomib for fighting cancers. Therefore, in this study, its physicochemical properties and interaction activities with serum protein have extensively been elucidated by both in vitro and in silico approaches to fulfill the pharmacokinetic and pharmacodynamic gaps. 5A8HQ exhibited the drug-likeness properties, where oral administration seems to be a route of choice owing to its high-water solubility and intestinal absorptivity. Multi-spectroscopic investigations suggested that 5A8HQ tended to associate with bovine serum albumin (BSA), a representative of serum protein, via the ground-state complexation. It apparently bound in a protein cleft between subdomains IIA and IIIA of BSA as suggested by the molecular docking and molecular dynamics simulations. The binding was mainly driven by hydrogen bonding and electrostatic interactions with a moderate binding constant at 104 M-1, conforming with the predicted free fraction in serum at 0.484. Therefore, 5A8HQ seems to display a good bioavailability in plasma to reach target sites and exerts its potent pharmacological activity. Likewise, serum albumin is a good candidate to be reservoir and transporter of 5A8HQ in the circulatory system.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Sítios de Ligação , Bovinos , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
13.
Front Nutr ; 8: 648995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055852

RESUMO

Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.

14.
Neurochem Int ; 148: 105083, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052298

RESUMO

Chronic stress is a risk factor for the development of psychiatric illnesses through impairment of the ability to appropriately regulate physiological and behavioral responses, but the molecular events that lead to damage of hippocampal neurons remain unclear. The medicinal herb Spilanthes acmella Murr. has been used as a traditional medicine for various diseases and its extracts exhibit antioxidant activity. The present study explored the molecular signals of mitochondrial dynamics and investigated the beneficial effects of S. acmella Murr. An ethyl acetate extract of this plant was used to assess mitochondrial dynamics in response to chronic restraint stress (CRS) in male Sprague-Dawley rats. The results demonstrated that the S. acmella Murr. extract reduced the expression of mitochondrial fission protein but induced HSP60, MnSOD and ATPsynthase in the hippocampus of the CRS rats. In addition, S. acmella Murr. extract reversed depressive symptoms in the forced swim test. Our findings suggested that S. acmella Murr. extract provides a potential treatment of chronic stress, and that the mechanism is associated with the alleviation of neuronal injury and maintenance of mitochondrial function.


Assuntos
Asteraceae/química , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Animais , Antioxidantes , Comportamento Animal/efeitos dos fármacos , Chaperonina 60/biossíntese , Chaperonina 60/genética , Doença Crônica , Cognição/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Plantas Medicinais , Ratos , Ratos Sprague-Dawley , Restrição Física
15.
Front Nutr ; 8: 714463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155508

RESUMO

BACKGROUND: alpha-Mangostin, a polyphenolic xanthone, is primarily found in the pericarp of mangosteen throughout Southeast Asia and is considered as the "Queen of Fruit" in Thailand. Nonetheless, it is not clarified how alpha-mangostin protects neuronal cells against oxidative stress. OBJECTIVE: In this study, molecular mechanisms underlying the neuroprotective effect of alpha-mangostin in defending hydrogen peroxide (H2O2)-induced neurotoxicity was explored. METHODS: cytotoxicity, reactive oxygen species (ROS) generation, apoptotic cascades, and protein expression profiles were performed incorporation of molecular docking. RESULTS: Human SH-SY5Y cells were pretreated with 1 µM alpha-mangostin for 3 h prior to exposure to 400 µM H2O2. alpha-Mangostin significantly inhibited oxidative stress-induced cell death in neuronal cells by reducing BAX protein, decreasing caspase-3/7 activation, and increasing anti-apoptotic BCL-2 protein. Collectively, alpha-mangostin was demonstrated to be a prominent ROS suppressor which reversed the reduction of antioxidant enzymes (CAT and SOD2). Surprisingly, alpha-mangostin significantly promoted the expression of the sirtuin family and the FOXO3a transcription factor exerting beneficial effects on cell survival and longevity. A molecular docking study predicted that alpha-mangostin is directly bound to the active site of SIRT1. CONCLUSION: Findings from this study suggest that alpha-mangostin potentially serves as a promising therapeutic compound against oxidative stress by activation of the SIRT1/3-FOXO3a pathway comparable to the effect of memantine, an anti-AD drug used for the treatment of moderate to severe dementia.

16.
Nutr Neurosci ; 24(2): 90-101, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30929586

RESUMO

Background: An imbalance of free radicals and antioxidant defense systems in physiological processes can result in protein/DNA damage, inflammation, and cellular apoptosis leading to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sesamin and sesamol, compounds derived from sesame seeds and oil, have been reported to exert various pharmacological effects, especially antioxidant activity. However, their molecular mechanisms against the oxidative stress induced by exogenous hydrogen peroxide (H2O2) remain to be elucidated. Aim: In this study, neuroprotective effects of sesamin and sesamol on H2O2-induced human neuroblastoma (SH-SY5Y) cell death and possible signaling pathways in the cells were explored. Methods: MTT assay and flow cytometry were conducted to determine cell viability and apoptotic profiles of neuronal cells treated with sesamin and sesamol. Carboxy-DCFDA assay was used to measure reactive oxygen species (ROS). Moreover, Western blot analysis was performed to investigate protein profiles associated with neuroprotection. Results: Pretreatment of the cells with 1 µM of sesamin and sesamol remarkably reduced the SH-SY5Y cell death induced by 400 µM H2O2 as well as the intracellular ROS production. Moreover, the molecular mechanisms underlying neuroprotection of the compounds were associated with activating SIRT1-SIRT3-FOXO3a expression, inhibiting BAX (proapoptotic protein), and upregulating BCL-2 (anti-apoptotic protein). Conclusion: The findings suggest that sesamin and sesamol are compounds that potentially protect neuronal cells against oxidative stress similar to that of the resveratrol, the reference compound. These antioxidants are thus of interest for further investigation in in vivo models of neuroprotection.


Assuntos
Benzodioxóis/administração & dosagem , Dioxóis/administração & dosagem , Peróxido de Hidrogênio/metabolismo , Lignanas/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenóis/administração & dosagem , Linhagem Celular Tumoral , Proteína Forkhead Box O3/metabolismo , Humanos , Peróxido de Hidrogênio/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo
17.
Bioorg Chem ; 105: 104384, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130346

RESUMO

The development of novel neuroprotective agents is urgently needed for the treatment of neurodegenerative diseases, affecting aging individuals worldwide. In this study, a new set of chalcone-triazole hybrids (6a-g) was synthesized and evaluated for their biological properties including cytotoxicity, antioxidant, anti-apoptosis, and neuroprotection using SH-SY5Y cells. The results showed that 6a and 6e provided neuroprotection in oxidative stress-induced neuronal cell damage. Both compounds significantly improved the morphology of neurons and obviously increased cell survival rate of neuronal cells induced by oxidative stress. Additionally, 6a and 6e counteracted H2O2­induced mitochondrial dysfunction, which was supported by maintaining mitochondrial membrane potential, attenuating BAX protein, and increasing BCL­2 protein within the mitochondria as well as upregulating SOD2 mitochondrial antioxidant enzyme. Interestingly, these compounds promoted neuroprotection via SIRT-FOXO3a signaling pathway similar to resveratrol. The data indicated that the chalcone-triazole derivatives (6a and 6e) could be considered to be promising compounds toward the discovery of disease-modifying candidates for a neurodegenerative therapy.


Assuntos
Antioxidantes/farmacologia , Chalconas/farmacologia , Fármacos Neuroprotetores/farmacologia , Triazóis/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chalconas/química , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/química
18.
EXCLI J ; 19: 458-475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32398970

RESUMO

DNA methylation, an epigenetic modification, is mediated by DNA methyltransferases (DNMTs), a family of enzymes. Inhibitions of these enzymes are considered a promising strategy for the treatment of several diseases. In this study, a quantitative structure-activity relationship (QSAR) modeling was employed to understand the structure-activity relationship (SAR) of currently available non-nucleoside DNMT1 inhibitors (i.e., indole and oxazoline/1,2-oxazole scaffolds). Two QSAR models were successfully constructed using multiple linear regression (MLR) and provided good predictive performance (R2 Tr = 0.850-0.988 and R2 CV = 0.672-0.869). Bond information content index (BIC1) and electronegativity (R6e+) are the most influential descriptors governing the activity of compounds. The constructed QSAR models were further applied for guiding a rational design of novel inhibitors. A novel set of 153 structurally modified compounds were designed in silico according to the important descriptors deduced from the QSAR finding, and their DNMT1 inhibitory activities were predicted. This result demonstrated that 86 newly designed inhibitors were predicted to elicit enhanced DNMT1 inhibitory activity when compared to their parent compounds. Finally, a set of promising compounds as potent DNMT1 inhibitors were highlighted to be further developed. The key SAR findings may also be beneficial for structural optimization to improve properties of the known inhibitors.

19.
EXCLI J ; 19: 209-226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256267

RESUMO

Coumarins are well-known for their antioxidant effect and aromatic property, thus, they are one of ingredients commonly added in cosmetics and personal care products. Quantitative structure-activity relationships (QSAR) modeling is an in silico method widely used to facilitate rational design and structural optimization of novel drugs. Herein, QSAR modeling was used to elucidate key properties governing antioxidant activity of a series of the reported coumarin-based antioxidant agents (1-28). Several types of descriptors (calculated from 4 softwares i.e., Gaussian 09, Dragon, PaDEL and Mold2 softwares) were used to generate three multiple linear regression (MLR) models with preferable predictive performance (Q 2 LOO-CV = 0.813-0.908; RMSE LOO-CV = 0.150-0.210; Q 2 Ext = 0.875-0.952; RMSE Ext = 0.104-0.166). QSAR analysis indicated that number of secondary amines (nArNHR), polarizability (G2p), electronegativity (D467, D580, SpMin2_Bhe, and MATS8e), van der Waals volume (D491 and D461), and H-bond potential (SHBint4) are important properties governing antioxidant activity. The constructed models were also applied to guide in silico rational design of an additional set of 69 structurally modified coumarins with improved antioxidant activity. Finally, a set of 9 promising newly design compounds were highlighted for further development. Structure-activity analysis also revealed key features required for potent activity which would be useful for guiding the future rational design. In overview, our findings demonstrated that QSAR modeling could possibly be a facilitating tool to enhance successful development of bioactive compounds for health and cosmetic applications.

20.
Drug Dev Res ; 81(1): 127-135, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617606

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection has been considered to be one of global health problems due to limited classes of effective antimicrobial drugs. Herein, 8-hydroxyquinoline (8HQ) and its derivatives (1-7) were investigated for their anti-MRSA and antioxidant activities. Cloxyquin (2), a halogenated 8HQ, exerted the highest antimicrobial activity (MIC50 ≤ 5.57 µM) with high safety index, whereas an amino-derivative 7 showed the strongest antioxidant activity. Additionally, quantitative structure-activity relationship (QSAR) study demonstrated that mass, polarizability, topological charge, and van der Waals volume are essential properties governing the anti-MRSA activity. Taken together, cloxyquin was highlighted as a promising compound for further development as a novel anti-MRSA agent. QSAR findings would also benefit for further rational design of novel 8HQ-based compounds to combat the MRSA resistance.


Assuntos
Cloroquinolinóis/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxiquinolina/química , Cloroquinolinóis/química , Cloroquinolinóis/farmacologia , Desenho de Fármacos , Halogênios/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...